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This article considers the Eulerian continuum description of turbulent transfer of momentum and moment of
momentum in a solid phase on the basis of the equations of transfer of the second and third moments of pul-
sations of the linear and angular velocities of particles. The pulsating characteristics of a gas are computed
using the two-parameter model of turbulence generalized to the case of gas-dispersed turbulent flows.

At the present time, the problem of obtaining a closed system of equations of turbulent motion of a disperse
flow on the basis of a rough approximation of unknown third-order correlations in the governing equations of transfer
of the second moments of pulsations of the linear and angular velocities of particles has received much attention. Defi-
nite progress has been made in finding the third moments of pulsations of the translational velocity of particles in the
absence of their rotation. In [1, 2], the sought values svp′ vp′ vp′ t, svp′wp′wp′ t, etc. were determined with the aid of algebraic
relations that express third-order correlations in terms of the second moments and their gradients by solving truncated
equations of transfer of the third moments. This made it possible to obtain a close description of the motion of a dis-
persed phase at the level of equations for second-order correlations. In [3, 4], to find the sought variables swp′wp′wp′ t and
sup′wp′wp′ t, the transfer equations of the variables themselves were used. Closing of the indicated equations was made on
the basis of the algebraic relations obtained by solving the truncated equations for the fourth moments. Thus, a closed
description of the motion of particles was obtained at the level of equations for triple correlations.

At the same time, modeling of the mixed third moments of pulsations of the linear and angular velocities of
particles is restricted to gradient representations. Thus, for example, in [5], to find the unknown quantities sωϕ′ vp′2 t,
sωϕ′wp′2 t, sωϕ′ωr′wp′2 t, etc., the coefficient of turbulent viscosity of the "gas" of particles ηt,p is introduced, which re-
lates the third moments to the gradients of the second moments (for example, sωϕ′2 vp′ t = −ηt,p ∂sωϕ′2 t ⁄ ∂r).

It seems that in the present work an attempt has been made for the first time to obviate the need for gradient
representations of mixed correlations by using the developed calculation technique [2], according to which a chain of
axisymmetric averaged transfer equations of the second and third moments of pulsations of the translational and angu-
lar velocities of a dispersed phase over the stretch of stabilized ascending motion of a gas suspension was obtained
with account for the interphase and interparticle interaction. The equations for triple correlations were closed by repre-
sentating the fourth moments in the form of a sum of products of the second moments, thus making it possible to ob-
tain a closed description of the motion of a dispersed phase at the level of equations for double correlations. In order
to compute the pulsating characteristics of the carrying medium, a modified two-parameter model of turbulence is used
which accounts for the influence of particles [6].

In constructing the system of differential equations of transfer of averaged and pulsating characteristics of a
two-phase flow on the basis of interpenetrating continua, interacting among themselves, the following simplifying
premises are used: 1) the process is stationary; 2) over the stretch of a stabilized gas-suspension flow there is no av-
eraged radial and transversal motion of phases, and the averaged parameters do not change in the axial direction; 3)
the vector of the angular velocity of particles ω is directed along the transversal axis; 4) the rotational pulse of colli-
sional origin is not taken into account [7]; 5) the solid phase concentration is uniformly distributed over the channel
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section; 6) pulsations of the angular velocity of the rotation of a liquid element are ignored, and 7) the solid phase
consists of monodisperse spherical particles.

The system of equations that describes the behavior of a two-phase flow over the stretch of a steady motion
of a gas suspension has the form
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The system of equations (1)–(4) is indeterminate, since the unknown variables sωr′wp′ t, sωϕ′ vp′ t, and svp′2 t are
present in it. To derive the transfer equations of second-order correlations it is first of all necessary to obtain pulsa-
tional equations of momentum and moment of momentum of the dispersed phase. In [4], pulsational equations were
constructed for the translational velocity of particles along the radial and transversal axes. With allowance made for the
Magnus force FM, these equations can be presented in the form
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Let us project the stationary actual equation of rotational motion of particles onto the radial and transversal
coordinate axes. In view of the axial symmetry of the problem (∂ ⁄ ∂ϕ = 0) the projections of the indicated equation
have the form [6]
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Applying the Reynolds procedure to the actual equations (8), subject to the assumptions made, we obtain the pulsa-
tional transfer equations of the moment of momentum of the solid phase along the radial and transversal axes:
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In order construct the transfer equation of the correlation sωr′wp′ t it is necessary to multiply Eq. (10) by wp′
and Eq. (6) by ωr′  and then sum up the resulting equations:
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We will transform Eq. (11) with the aid of expression (7) and pulsational continuity equation preliminarily
multiplied by ωr′wp′ . Thereafter, in the resulting equations we take averages. Over the stretch of the stabilized motion
of the two-phase flow we bring second moment of sωr′wp′ t to the form
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Similarly we can obtain transfer equations for the remaining sought correlations: sωr′ vp′ t, sωϕ′wp′ t, sωϕ′ vp′ t,
sωr′2 t, sωϕ′2 t, sωϕ′ωr′ t, swp′2 t, svp′2 t, and swp′ vp′ t. To close Eq. (12) it is necessary to compute triple correlations
sωr′wp′ vp′ t and sωϕ′wp′2 t present in that equation. For this purpose, we will construct transfer equations of the sought
moments. We shall illustrate the derivation of these equations using as an example the equation for the variable
sωr′wp′ vp′ t. We multiply the pulsational equation (10) by wp′  and Eq. (6) by ωr′ , and sum up the equations. We multiply
the resulting expression by the pulsation of the radial velocity of particles vp′  and Eq. (5) by ωr′wp′  and sum up them.
We will transform the constructed equation with the aid of Eq. (7) and pulsational continuity equation that had been
preliminarily multiplied by ωr′wp′ vp′ . Thereafter, we perform averaging in the resulting equation. The transfer equation
of the sought quantity sωr′wp′ vp′ t for the stretch of the stabilized gas suspension flow is written as
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In Eq. (13) there are fourth moments which, just as in [4], can be presented as a sum of the products of second mo-
ments:
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Substituting Eq. (14) into Eq. (13) and performing simple transformations, we obtain
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Similarly we can obtain algebraic expressions for the remaining unknown third moments present in the transfer equa-
tions of double correlations sωr′ vp′ t, sωr′wp′ t, sωϕ′wp′ t, sωϕ′ vp′ t, sωr′2 t ,sωϕ′2 t, sωϕ′ωr′ t, swp′2 t, svp′2 t, and swp′ vp′t. Some
of these equations are given below:
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We transform Eq. (12) with the aid of Eq. (15). As a result, we arrive at the parabolic transfer equation of
the correlation sωr′wp′ t:
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Similarly we can obtain parabolic transfer equations for the remaining sought correlations: sωϕ′wp′ t, sωr′2 t,
sωϕ′2 t, sωϕ′ vp′ t, sωϕ′ωr′ t, sωr′ vp′ t, svp′2 t, swp′2 t, and swp′ vp′ t. Below they are given without derivation:
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− 
∂

r∂r
 







r svp′
2 t ∂ sωϕ′ vp′t

ψ1∂r







 − 

∂
2r∂r

 







r sωϕ′ vp′ t ∂ svp′
2 t

ψ1∂r







 − 

∂
2r∂r

 







r svp′
3 t ∂ωϕ

ψ1∂r







 −

− 
∂

r∂r
 
swp′ vp′ t sωr′ vp′ t

ψ1
 + 

2∂
r∂r

 
swp′ vp′ t sωϕ′wp′ t

ψ1
 − 

λω∂r (ug − up) sωϕ′
2 vp′ t

r∂rψ1
 +

+ 
svp′

2 t ∂ωϕ

∂r
 − 

sωϕ′wp′
2 t

r
 + 

sωr′wp′ vp′ t
r

 = − 




1

τ
 + γ




 sωϕ′ vp′ t − λω (ug − up) sωϕ′

2 t ; (30)

the quantity sωϕ′ωr′ t

− 
∂

r∂r
 







r svp′
2 t ∂ sωϕ′ωr′t
ψ3∂r







 − 

∂
r∂r

 







r sωϕ′ vp′t ∂ sωr′ vp′ t

ψ3∂r







 − 

∂
r∂r

 







r sωr′vp′ t ∂ sωϕ′ vp′ t

ψ3∂r







 +

+ 
2∂
r∂r

 
sωϕ′wp′ t sωr′wp′ t

ψ3
 − 

∂
r∂r

 







r sωr′ vp′
2 t ∂ωϕ

ψ3∂r







 − 

∂
r∂r

 
sωr′

2 t swp′ vp′ t
ψ3

 −

1012



− 
∂

r∂r
 
sωr′wp′ t sωr′ vp′ t

ψ3
 + 

∂
r∂r

 
ωϕ sωϕ′wp′ vp′t

ψ3
 + 

∂
r∂r

 
sωϕ′

2 t swp′ vp′t

ψ3
 +

+ 
∂

r∂r
 
sωϕ′wp′ t sωϕ′ vp′ t

ψ3
 − 

λω∂r (ug − up) sωϕ′
2 ωr′ t

r∂rψ3
 + 

sωr′ vp′ t ∂ωϕ

∂r
 + 

sωr′
2 wp′t
r

 −

− 
ωϕ sωϕ′wp′t

r
 − 

sωϕ′
2 wp′ t
r

 = − 2γ sωϕ′ωr′ t ; (31)

the quantity sωr′ vp′ t

− 
∂

r∂r
 







r svp′
2 t ∂ sωr′ vp′t
ψ1∂r







 − 

∂
2r∂r

 







r sωr′ vp′ t ∂ svp′
2 t

ψ1∂r







 + 

2∂
r∂r

 
sωr′wp′ t swp′ vp′ t

ψ1
 +

+ 
∂

2r∂r
 
ωϕ svp′

2 wp′ t

ψ1
 + 

∂
r∂r

 
swp′ vp′ t sωϕ′ vp′ t

ψ1
 − 

λω∂r (ug − up) sωϕ′ωr′ vp′t

r∂rψ1
 −

− 
ωϕ swp′ vp′ t

r
 − 

sωϕ′wp′ vp′ t
r

 − 
sωr′wp′

2 t

r
 = − 





1

τ
 + γ




 sωr′ vp′ t − λω (ug − up) sωϕ′ωr′ t ; (32)

the quantity svp′ vp′ t

∂

r∂r
 






rτ svp′ vp′ t 

∂ svp′ vp′ t

∂r







 − 

2

r
 
∂ (τ swp′ vp′ t

2)

∂r
 − 

2τ svp′ vp′ t

3r
 
∂ swp′wp′t

∂r
 −

− 
4τ swp′ vp′ t

3r
 
∂ swp′ vp′ t

∂r
 + 

4τ swp′wp′t
2

3r
2  − 

4τ svp′vp′t swp′wp′ t

3r
2  − 

4τ swp′ vp′ t
2

3r
2  + 

2

τ
 (svp′ vg′ t − svp′ vp′ t) −

− 2λω (ug − up) sωϕ′ vp′ t + 2N 










δ2

6912β2 




∂up

∂r





 2

 




1 − Kn

2
 − 

1 − Kτ

7





 2

 − C1 svp′
2 t (1 − Kn

2)









 +

+ 
λω∂rτ sωϕ′ vp′

2 t (ug − up)

r∂r
 + 

4τλω (ug − up) (sωr′wp′ vp′ t − sωϕ′wp′
2 t)

3r
 = 0 ; (33)

the quantity swp′2 t

∂

3r∂r
 






rτ svp′ vp′ t 

∂ swp′
2 t

∂r







 + 

2∂

3r∂r
 






rτ swp′ vp′t 

∂ swp′ vp′t

∂r







 − 

2

3r
 
∂ (τ swp′wp′t

2)

∂r
 +

+ 
2

3r
 
∂ (τ svp′ vp′ t swp′wp′ t)

∂r
 + 

2

3r
 
∂ (τ swp′ vp′t

2)

∂r
 + 

2τ svp′ vp′ t

3r
 
∂ swp′wp′ t

∂r
 +

+ 
4τ swp′ vp′ t

3r
 
∂ swp′ vp′ t

∂r
 − 

4τ swp′wp′ t
2

3r
2  + 

4τ svp′ vp′ t swp′wp′t

3r
2  + 

4τ swp′ vp′ t
2

3r
2  + 

2

τ
 ×
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× (swp′wg′ t − swp′wp′t) + 2λω (ug − up) sωr′wp′ t +

+ 2N 











δ2

6912β2
 




∂up

∂r





 2

 




1 − Kn

2
 − 

1 − Kτ

7





 2

 − C2 swp′
2 t (1 − Kn

2)









 −

− 
2λω∂rτ (ug − up) (sωr′wp′ vp′ t − sωϕ′wp′

2 t)

3r∂r
 − 

4τλω (ug − up) (sωr′wp′ vp′ t − sωϕ′wp′
2 t)

3r
 = 0 ; (34)

the quantity swp′ vp′ t

2∂

3r∂r
 






rτ svp′ vp′ t 

∂ swp′ vp′ t

∂r







 + 

2

3r
 
∂ (τ svp′ vp′ t swp′ vp′ t)

∂r
 + 

∂

3r∂r
 






rτ swp′ vp′t 

∂ svp′ vp′t

∂r







 −

− 
4

3r
 
∂ (τ swp′ vp′ t swp′

2 t)

∂r
 − 

τ swp′ vp′ t

r
 
∂ swp′wp′ t

∂r
 − 

10τ swp′ vp′ t swp′wp′ t

3r
2  +

+ 
2τ svp′ vp′ t

3r
 
∂ swp′ vp′ t

∂r
 + 

2τ svp′ vp′ t swp′ vp′ t

3r
2  + λω (ug − up) (sωr′ vp′ t − sωϕ′wp′ t) +

+ 
τ swp′ vp′ t

3r
 
∂ svp′ vp′ t

∂r
 + 

svg′wp′ t + svp′wg′ t − 2 swp′vp′ t

τ
 + 

λωτ sωr′wp′
2 t (ug − up)

r
 −

− 
2λω∂rτ (ug − up)

3r∂r
 







sωr′ vp′
2 t

2
 − sωϕ′wp′ vp′ t







 − 

2λωτ (ug − up)

3r
 







sωr′ vp′
2 t

2
 − sωϕ′wp′ vp′ t







 = 0 . (35)

The mixed correlation moments svg′wp′ t, svp′wg′ t, swg′wp′ t, and svg′ vp′ t are determined according to the recom-
mendations given in [6]. In Eqs. (33) and (34) there are terms that describe the generation and dissipation of the
pseudoturbulent energy of the solid phase caused by interparticle collisions due to their averaged and pulsating motion
(the eleventh and twelfth terms of Eq. (33) and the fourteenth and fifteenth terms of Eq. (34)). These terms cannot be
calculated by the methods of turbulence theory, since the pulsations which are associated with interparticle collisions
depend mainly on the random position of the unit vector directed along the impact line. Therefore, to determine them
a specially developed computational technique was used, which is based on the analysis of the dynamics of the proc-
ess of collisions [8].

In order to calculate a two-phase flow over a stabilized portion of a tube with the aid of Eqs. (1)–(4), (15)–
(35), we must specify boundary conditions on the axis and channel wall. As the boundary conditions on the tube axis
the requirements for the flow symmetry are used:

(∂ug
 ⁄ ∂r)ax = (∂kg

 ⁄ ∂r)ax = (∂ svp′
2 t ⁄ ∂r)ax = (∂ swp′

2 t ⁄ ∂r)ax = (∂ swp′ vp′ t ⁄ ∂r)ax = 0 ,

(∂ sωϕ′ vp′ t ⁄ ∂r)ax = (∂ sωϕ′ωr′ t ⁄ ∂r)ax = (∂ sωr′ vp′t ⁄ ∂r)ax = (∂up
 ⁄ ∂r)ax = (∂εg

 ⁄ ∂r)ax = 0 ,

(∂ sωϕ′wp′ t ⁄ ∂r)ax = (∂ sωr′wp′ t ⁄ ∂r)ax = (∂ swr′
2 t ⁄ ∂r)ax = (∂ sωϕ′

2 t ⁄ ∂r)ax = 0 ,

(36)

and on the channel wall the following relationships are given:

εg,w = ηg  (∂2
kg

 ⁄ ∂r
2)w ,   ug,w = kg,w = 0 ,   up,w = 

δ
24 √2  β (1 − Kτ)

 




∂up

∂r



w

 (7Kn − 2Kτ − 5) ,
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(∂ svp′
2 t ⁄ ∂r)w = (∂ swp′

2 t ⁄ ∂r)w = (∂ swp′ vp′ t ⁄ ∂r)w = (∂ sωϕ′ vp′ t ⁄ ∂r)w = 0 ,

(∂ sωϕ′ωr′ t ⁄ ∂r)w = (∂ sωr′ vp′t ⁄ ∂r)w = (∂ sωϕ′wp′ t ⁄ ∂r)w = (∂ sωr′wp′ t ⁄ ∂r)w = 0 ,

(∂ sωr′
2 t ⁄ ∂r)w = (∂ sωϕ′

2 t ⁄ ∂r)w = 0 .

(37)

The foregoing system of equations was integrated numerically by the pivot method with iterations on a
nonuniform grid with 51 nodes over the coordinate r. The nonuniformity of the grid was prescribed so that not less
than 5 points could be present in the region of the viscous sublayer. Let us discuss the results of calculations of
three variants at β = 0.0012, ρg = 1.3 kg/m3 and ρp = 1400 kg/m3, Kτ = 0.3, Kn = 0.5, R = 0.1 m, and δ =
0.29⋅10−3 m. Variant I) ug,m = 6 m/sec; II) ug,m = 10 m/sec; III) ug,m = 8 m/sec. The calculation procedure is illus-
trated in Figs. 1–7 in which the profiles of the averaged and pulsating characteristics of a two-phase flow are
shown. Figure 1 presents the calculated values of the averaged velocities of the gas and particles in comparison with
the data of measurements of [9] for a vertical channel with R = 15 mm at ug,m = 8 m/sec, δ = 0.5⋅10−3 m, and ρp
= 1020 kg/m3. It is seen that the model gives a good description of the qualitative and quantitative behavior of the
curves. Some discrepancies between the results of calculations and experimental data in the wall zone seem to be as-
sociated with the fact that in the model the assumption on uniform distribution of the concentration of the solid
phase over the channel section is made.

Fig. 1. Distribution of the axial velocities of the carrying medium 1 and dis-
persed phase 2 over the cross section of flow in comparison with the experi-
mental data of [9] at the mass concentration of particles: a) 1.1; b) 2 (points,
experiment).

Fig. 2. Profiles of the longitudinal velocities of the gas and particles: variant I
— 5) ug; 6) up; II — 1) ug; 2) up; III — 3) ug; 4) up.

Fig. 3. Profiles of the second moments of pulsations of the translational veloc-
ity of the solid phase: variant I — 1) swp′wp′ t; 2) svp′ vp′ t; 7) swp′ vp′ t; II — 4)
swp′wp′ t; 5) svp′ vp′ t; III — 3) swp′wp′ t; 6) svp′ vp′ t.
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The profiles of the longitudinal velocities of the gaseous and dispersed phases over the stretch of the stabi-
lized gas suspension flow are shown in Fig. 2. Near the channel wall, where the gas velocity tends to zero and the
carrying medium is unable to transport particles, they are suspended due to the pulsating transfer of the solid phase
momentum. On the whole, the character of change in the function ug(r) is close to the character of change in the up(r)
curves. This similarity is preserved with an increase in the gas velocity.

Figure 3 presents the values of the shear, swp′ vp′ t, and normal, swp′wp′ t, svp′ vp′ t Reynolds stresses over the the

stabilized stretch of the channel. It is seen that in the axial zone the field of the pulsation energy of the solid pha-
se is anisotropic, and in the peripheral region it is isotropic. The presence of distinct maxima of the svp′ vp′ t(r) and

swp′wp′ t(r) curves in the wall zone is due to the influence of generation of the pseudoturbulent energy of particles due

to interparticle collisions 
2Nδ2(∂up

 ⁄ ∂r)2(0.5 (1 − Kn) − (1 − Kτ) ⁄ 7)2

6912β2  (see Eqs. (33) and (34)). On the ascending portions

of curves 1–6 the character of distribution of the solid phase dispersion energy components is determined by the con-

siderable growth of the absolute value of the derivative ∂up
 ⁄ ∂r (Fig. 2, curves 2, 4, 6). In the wall zone, the gen-

eration of the pseudoturbulent energy is decreased; therefore, the functions svp′ vp′ t(r) and swp′wp′ t(r) decrease.

The profiles of the averaged and pulsating characteristics of a disperse flow are given in Fig. 4. It is seen that
with an increase in the mean (over the section) gas velocity ug,m the character of the functions ωϕ(r) and sωϕ′ vp′ t(r)
does not change, but their absolute values somewhat increase (curves 2 and 3, 5 and 6 are compared).

Figure 5 demonstrates the distribution of the second and third moments of pulsations of the angular velocity
of particles over the stretch of the stabilized two-phase flow. The behavior of the function sωϕ′ωr′2 t(r) (curve 1)
within 0.06 m < r < 0.1 m depends on the third, fourth, and sixth terms of Eq. (22). On the ascending branch, 0.075
m < r < 0.093 m, the character of the sωϕ′ωr′2 t(r) curve is determined by the increase in the functions ωϕ(r),
sωϕ′ωr′wp′ t(r), sωϕ′2 t(r), sωr′wp′ t(r) and by the decrease of the sωr′2 vp′ t(r) curve (Fig. 4, curves 2, 4, 7; Fig. 5, curve
2; Fig. 6, curve 5). Over the descending stretch, 0.093 m < r < 0.0972 m, the decrease of the function sωϕ′ωr′2 t(r) is
connected with the decrease of the third and sixth terms of the indicated equation due to the decrease of the curve
sωϕ′ωr′wp′2 t(r) and increase of the function sωr′2 vp′ t(r). With a further increase of the radial coordinate (r > 0.0972 m)
the function sωϕ′ωr′wp′ t(r) becomes negative and its absolute value increases, as a result of which the sωϕ′ωr′2 t(r)
curve continues to decrease in this region.

Fig. 4. Profiles of the averaged angular velocity of particles and of mixed cor-
relations of second and third order: variant I — 3) ωϕ; 5) sωϕ′ vp′ t; II — 1)
ωϕ; III — 2) ωϕ; 4) sωr′wp′ t; 6) sωϕ′ vp′ t; 7) sωr′2 vp′ t.

Fig. 5. Profiles of pulsating moments of the rotational velocity of particles:
variant I — 3) sωϕ′ωr′2 t; 4) sωϕ′2 t; 5) sωϕ′2 ωr′ t; III — 1) sωϕ′ωr′2 t; 2) sωϕ′2 t;
6) sωϕ′2 ωr′ t.
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It is seen from Fig. 5 that the function sωϕ′2 t(r) has a maximum at the point r = 0.0975 m (curve 2) the

presence of which can be explained by the influence of the second, fourth, and eighth terms of Eq. (29). Within the

range 0.073 m < r < 0.0975 m the increase of the function sωϕ′2 t(r) is associated with the increase of the eighth term

of the equation due to the rapid increase in the gradient of the angular velocity of particles ∂ωϕ ⁄ ∂r and decrease of

the curve sωϕ′ vp′ t(r) in this zone (Fig. 4, curves 2, 6). In this case the algebraic sum of the second, 
∂

2r∂r





rsωϕ′ vp′ t∂sωϕ′ vp′ t
ψ4∂r




 >

0, and fourth, 
∂

2r∂r
 




rsωϕ′ vp′2 t∂ωϕ

ψ4∂r




 < 0, terms of the equation is close to zero. Over the stretch with r > 0.0975 m,

where the second derivatives change signs and the value of the eighth term decrease, the second term starts to prevail

over the fourth and the eighth ones, and therefore the function sωϕ′2 t(r) decreases in this region.

Figure 6 presents the results of calculations of the third-order correlation sωϕ′2 vp′ t over the stretch of the de-
veloped motion of gas suspension (curve 3). The balance of the terms of Eq. (18) shows that the basic role in the
formation of the profile of sωϕ′2 vp′ t(r) is played by the first, second, and fourth terms of the equation named. The
decrease of the curve sωϕ′2 vp′ t(r) in the range 0.070 m < r < 0.091 m is associated with the increase of the functions
svp′2 t(r), sωϕ′2 t(r), ωϕ(r), sωϕ′ vp′2 t(r) (sωϕ′ vp′2 t(r) > 0) and the decrease of the function sωϕ′ vp′ t(r) in this zone (Fig. 3,
curve 2; Fig. 4, curves 3 and 5; Fig. 5, curve 4). Over the stretch 0.091 m < r < 0.098 m the derivative ∂sωϕ′2 t ⁄ ∂r
tends to zero and the function sωϕ′ vp′2 t(r) decreases, assuming negative values, as a result of which the function
sωϕ′2 vp′ t(r) increases in this region. The further increase of the function sωϕ′2 vp′ t(r) within the range 0.098 m < r <
0.099 m is associated with the increase of the values of sωϕ′ vp′2 t and ∂sωϕ′2 t ⁄ ∂r. Near the channel wall the
sωϕ′2 vp′ t(r) curve decreases due to the decrease in the normal Reynolds stress svp′2 t, in the absolute values of the de-
rivative ∂sωϕ′2 t ⁄ ∂r, and in the correlation sωϕ′ vp′2 t.

Figure 7 demonstrates the distribution of the third moment sωϕ′3 t over the cross section of the flow. An
analysis of the results of calculations shows that the character of the function sωϕ′3 t(r) (curve 3) is formed under the
influence of the first and second terms of Eq. (25). The monotonic increase in the function sωϕ′3 t(r) within the range
0 < r < 0.093 m is due to the decrease of the sωϕ′ vp′ t(r) and sωϕ′2 vp′ t(r) curves and increase in the derivatives ∂sωϕ′2 t/
∂r(r) and ∂ωϕ ⁄ ∂r in that zone (Fig. 4, curves 3 and 5; Fig. 5, curve 4; Fig. 6, curve 3). On the descending branch
with 0.093 m < r < 0.099 m, two stretches can be distinguished. Over the first stretch with 0.093 m < r < 0.0975 m
the decrease in the function sωϕ′3 t(r) is associated with the decrease in the value of sωϕ′2 vp′ t and in the gradient
∂sωϕ′2 t ⁄ ∂r. Over the second stretch with 0.0975 m < r < 0.099 m, the function sωϕ′2 vp′ t(r) tends to zero. In this case
the derivative ∂sωϕ′2 t ⁄ ∂r becomes negative, whereas its absolute value increases and as a result the sωϕ′3 t(r) curve

Fig. 6. Distribution of the second and third moments of pulsations of the linear
and angular velocities of the dispersed phase: variant I — 1) sωϕ′ωr′wp′ t; 2)
sωϕ′2 wp′ t; 3) sωϕ′2 vp′ t; 4) sωϕ′ωr′ t; III — 5) sωϕ′ωr′wp′ t.

Fig. 7. Distribution of the third moment of pulsations of the angular velocity
of particles: 1) II; 2) III; 3) I.
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continues to decrease in this interval. In the wall region, r > 0.099 m, the value of the third moment sωϕ′2 vp′ t increases
and the ratio ∂sωϕ′2 t ⁄ ∂r decreases, as a result of which the function sωϕ′3 t(r) increases over this stretch.

The above-described technique used to calculate the averaged and pulsating characteristics of a dispersed
phase reflects the basic laws governing this complex class of two-phase flows.

NOTATION

C1, C2, empirical constants; F, force, kg/(sec2⋅m2); G, generation of turbulent energy of a gas in the wakes of
particles, kg/(sec3⋅m); g, free-fall acceleration, m/sec2; K, coefficient of velocity recovery on impact; k, kinetic pulsa-
tion energy, m2/sec2; L1, L2, coefficients; N, frequency of impacts, 1/sec; P, gas pressure, N/m2; R, radius of the chan-
nel, m; r, z, and ϕ, radial, longitudinal, and transversal coordinates, m; S, dissipation of the turbulent energy of gas
due to the action of the force of interphase interaction, m2/sec4; u, v, w, averaged components of the velocity vector,
m/sec; β, true volumetric concentration of particles; γ, coefficient, sec−1; δ, diameter of a particle, m; ε, dissipation of
pulsation energy, m2/sec3; ξ1, ξ2, χ, functions; η, kinematic viscosity, m2/sec; λ, coefficient; ρ, density, kg/m3; σ, em-
pirical constant; τ, time of dynamic relaxation, sec; ψ1, ψ2, ψ3, ψ4, ψ5, and ψ6, coefficients, sec−1; ω, angular veloc-
ity, sec−1. Subscripts and superscripts: a, aerodynamic resistance of a particle; ax, longitudinal axis of the flow; d,
dissipation; g, gas; m, mean (over the section); n, normal; p, particle; t, turbulent pulsations; w, channel wall; τ, tan-
gential; ′, pulsational component of averaging in time; s t, averaging in time;  ̂ , actual values.
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